Part Number Hot Search : 
72310 572327 JHV368 SR2020P MMT555 MBR3010 KV1310 SFH48
Product Description
Full Text Search
 

To Download TGM50-200A-15L Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  vol.04 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
contents references design materials nepec npm ceramics applications langevin bolt-on transducers transducers for cleaning equipment molded waterproof transducers high-frequency transducers aerial microphone transducers sonar transducers 3 4 9 15 16 19 20 26 27 28 ??????????????????????????????????????????????????????????????? ? ????????????????????????????????????????????????????????????? ????????????????????????????????????????????????????????? ???????????????????????????????????????????????????????????????? ???????????????????????????????????????????????????? ???????????????????????????????????????????????? ??????????????????????????????????????????????????? ????????????????????????????????????????????????????? ???????????????????????????????????????????????????? ???????????????????????????????????????????????????????????? 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 3 introduction increasingly, we can see the unique properties of mechanical vibration and ultrasonic waves put to use in many ways. and the single most important key to the effective monitoring or use of vibration is the transducer. today's transducers are called on for standards of performance that are higher than ever before. for best results in any application, the piezoelectric materials in the transducer should be selected with the specific use in mind. this catalog contains a wealth of information to help you evaluate transducer characteristics. and when it comes to the materials themselves, look to nec tokin's nepec npm piezoelectric ceramics. using zicron and lead titanate as the main components, nepec materials have a wealth of features: 1) a wide selection range, especially for mechanical characteristics and degree of electromechanical coupling. 2) high stability against temperature and humidity variations and aging. 3) remarkably fine ceramics that can be machined into a variety of sizes and shapes. 4) excellent resistance to voltage, permitting transducers with polarization in any direction. 5) a wide range of potential uses. this catalog describes nec tokin's standard piezoelectric ceramics, and it also describes nec tokin's line of transducers. if you cannot find the desired material characteristics or transducer for your application in these pages, please contact us directly; our engineering staff can work with you to develop materials for your purpose. references please refer to the following bibliography if you want more details of basic theory and applications of transducers: 1) ultrasonic technology handbook (j. tomoyoshi et al, nikkan kogyo shinbun) 2) ceramic dielectrics (k. okazaki, gakkensha) 3) physical acaustic vol i part a (mason, academic bress) 4) piezoelectric ceramic materials (t.tanaka, denpa shinbun) 5) piezoelectric ceramics and their applications (electronic materials association, denpa shinbun) 6) new ultrasonic wave technologies (e. mori, nikkan kogyo shinbun) 7) ultrasonic engineering (h. wada, nikkan kogyo shinbun) 8) ultrasonic circuit (s. ishiwata, nikkan kogyo) 9) ultrasonics in medicine (compiled by the japan society of ultrasonics in medicine, igaku shoin) 10) simple applications of ultrasonics (s. fujimori, sanpo) 11) electromechanical functional parts (compiled by specialized committee of the institute of electrical engineers of japan) 12) test methods for piezoelectric ceramic transducers (emas-6001 to emas-6004) (piezoelectric ceramic engineering committee, electronic materials association) 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
4 piezoelectric ceramics vol.04 evaluati o nec t o transducer m 1) resona n when an frequency f i natural freq u violently. t frequency f r a consta n was used fo r resonance f r can be meas u such as the h resonan c equivalent c i anti-resona n following e q fi g fr = { 12 / fa = { 12 / a piezoelectric material responds mechanically when voltage is applied, and conversely, generates a voltage in response to a mechanical change. to create piezoelectric ceramics, polycrystalline ceramics are fired and baked at a high temperature. then electrodes are mounted and a dc field applied in order to polarize the ceramic material; once polarized, the material exhibits piezoelectric properties, allowing it to be used as a piezoelectric ceramic transducer. these transducers are also called electrostriction transducers, since ceramic crystals are deformed by electricity. barium titanate and lead zircotitanate are the most popular piezoelectric ceramics. in addition, nec tokin also uses a variety of other materials, including conventional lead zircotitanate. this results in piezoelectric materials that can be used in a wide variety of applications: those that use the piezoelectric effect (such as igniters and pickups), those that utilize resonance (e.g., filters), and those that utilize the electrostrictive effect (such as piezoelectric buzzers and displacement elements). in addition to barium titanate and lead zircotitanate, popular as piezoelectric ceramics, nec tokin offers multi- component solid ceramics developed from conventional lead zircotitanate ceramics. they meet a wide range of specifications for a wide range of applications. the main applications include: those that use the piezoelectric effect (such as sensors and pickups), those that utilize resonance (such as transducers for ultrasonic motors and cleaning equipments), and those that utilize the electrostrictive effect (such as piezoelectric sound elements and displacement elements). in addition, they can be used as ultrasonic vibrators and transducers. design materials outline 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 5 evaluation of transducer characteristics nec tokin evaluates the characteristics of transducer materials based on a number of parameters. 1) resonant frequency when an ac voltage is applied to the transducer and frequency f is varied to be in agreement with the natural frequency of the transducer, it vibrates very violently. this frequency is called resonance frequency fr. a constant voltage circuit or a low voltage circuit was used for measurement of the resonance and anti- resonance frequencies. recently. these frequencies can be measured easily with an impedance analyzer such as the hp4194a of hewlett-packard. resonance frequency fr obtained from the equivalent circuit near the resonance frequency and anti-resonance frequency fa can be expressed by the following equations: practically, frequencies minimizing and maximizing the impedance shown in fig. 2 are generally treated as fr and fa, respectively. fig. 1-1 equivalent circuit of transducer fig. 1-2 impedance characteristic of piezoelectric transducer resonant frequency fr can be defined in a number of different ways, depending on the mechanical structure and oscillation of the transducer. a) radial vibration t d d>3t fig. 1-3 radial vibration is in the direction of the arrows. the coefficient of electromechanical coupling for this type of vibration us called kr. fr n d hz = [] 1 ??????????(1) frequency (hz) fr fa impedance () fr l c = {} 12 11 / fa lcccc =+ () {} 12 10 1 1 0 // l 1 c 1 c 0 r 1 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
6 piezoelectric ceramics vol.04 3) relativ e when the el e electric fiel d under a con s dielectric co n defined by d 0 . this rela t t 33 / 0 when t electric fiel d t 11 / 0 when t calculation o eq. 11. stati using an all- p ( t 11 / 0 is als where 0 : relat (8.85 4 t : dista s : elect r c : stati c e where kr : electr o vibra t k 31 : electr o lengt h k 33 : electr o longit kt : electr o ness v k 15 : electr o vibrati fr : reso n fa : antire s ? 33 0 t / = k kt k = ? ? = ? ? = ? ? 2 2 2 33 15 fr n hz = [] 3 l fr n hz = [] 2 l b) lengthwise vibration the direction of vibration is perpendicular to the polarization direction; it is a simple vibration in one plane only. the coefficient of electromechanical coupling is known as k 31 . c) longitudinal vibration the directions of polarization and vibration are the same, vibration is simple vibration. the electro- mechanical coupling coefficient is known as k 33 . fig. 1-5 >3(a,b,d) d a b d) thickness vibration here, thickness is small compared with the area of the radiation plane; the effect of vibration is the same as that of longitudinal vibration. generally, vibration is in two directions, and discrimination can be made between the two. the electromechanical coupling coefficient for this type of vibration is called kt. e) shear vibration the direction of vibration is the same as the polarization direction. orientation of the drive field direction is perpendicular to it. a drive electrode is located perpendicular to the direction of polarization. the electromechanical coupling coefficient is expressed by k 15 . where n 1 : frequency constant of radial vibration (hz-m) n 2 : frequency constant of lengthwise vibration (hz-m) n 3 : frequency constant of longitudinal vibration (hz-m) n 4 : frequency constant of thickness vibration (hz-m) n 5 : frequency constant shear vibration (hz-m) d : diameter of disc or column (m) : length of plate, column, or cylinder (m) a,b: width of square plate or column (hz-m) t : thickness of disc, square plate, or cylinder (m) d t t a b fig. 1-6 t 3(a,b,d) t fig. 1-7 fr n t hz = [] 4 fr n t hz = [] 5 ??????????(3) ??????????(4) ??????????(5) t >4a a>t fig. 1-4 a ??????????(2) 2) coefficient of electromechanical coupling the coefficient of electromechanical coupling repre- sents the mechanical energy accumulated in a ceramic or crystal; it is related to the total electrical input. this coefficient k can be calculated for each individual vibration mode by using the resonant (fr or fm) and antiresonant frequencies (fa or fn) and the applicable formula shown here: ?????????????????????(6) ?????????????????????????(7) kr fa fr fr k r rr r fa fr = ? ? ? ? ? = ? =? 251 2 31 . tan 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 7 3) relative dielectric constant when the electric flux density caused by applying an electric field e between electrodes of a transducer under a constant stress is regarded as d, the relative dielectric constant is obtained by dividing the constant, defined by d/e= t , by the vacuum dielectric constant 0 . this relative dielectric constant is expressed by t 33 / 0 when the direction of polarization and applied electric field are the same; it is expressed by t 11 / 0 when these directions are perpendicular. calculation of relative dielectric constant is shown in eq. 11. static capacitance is usually measured at 1khz using an all-purpose bridge or a c meter. ( t 11 / 0 is also calculated using the same equation.) where 0 : relative dielectric constant in vacuum (8.854x10 -12 f/m) t : distance between electrodes (m) s : electrode area (m 2 ) c : static capacitance (f) e p e p fig.1-8 where kr : electromechanical coupling coefficient for radial vibration k 31 : electromechanical coupling coefficient for lengthwise vibration k 33 : electromechanical coupling coefficient for longitudinal vibration kt : electromechanical coupling coefficient for thick- ness vibration k 15 : electromechanical coupling coefficient for shear vibration fr : resonant frequency [hz] fa : antiresonant frequency [hz] ? 33 0 0 t tc s / = ? 11 0 t / ? 33 0 t / ???????????????????????????(11) ????????????????(8) ????????????????(9) ???????????????(10) k fr fa fr fa kt fr fa fr fa k fr fa fr fa =? ? ? ? ? ? ? ? ? ? =? ? ? ? ? ? ? ? ? ? =? ? ? ? ? ? ? ? ? ? 22 22 22 33 15 cot cot cot 4) young's modulus for different modes of vibration, young's modulus is calculated by eq. 12, based on the sonic velocity and density of the material. where : density (kg/m 3 ) (=2fr ): sonic velocity (m/sec.) n: newton 5) mechanical q the mechanical q is the "sharpness' of mechanical vibration at resonant frequency, and is calculated with eq 13. where fr : resonant frequency (hz) fa : antiresonant frequency (hz) zr : resonant resistance ( ) c : static capacitance (f) where a simpler method is called for, mechanical q may be calculated with eq. 14, using frequencies f 1 and f 2 which are each 3 db from the resonant frequency. the values shown for material characteristics in this catalog are calculated using eq. 13. 6) piezoelectric constant there are two types of piezoelectric constants, the piezoelectric strain constant and the coefficient of voltage output. a) piezoeiectric strain constant this is a measure of the strain that occurs when a specified electric field is applied to a material that is in the condition of zero stress. this constant is calculated with eq. 15. where k : coefficient of electromechanical coupling t : dielectric constant y e : young's modulus (newton/m 2 ) qm fr ff = ? 12 dk y mv t e = ( ) / ynm e = [] ? 22 / qm fa fr = ? 2 2 2 fr zr c(fa 2 ) ??????????????????????(12) ????????????(13) ??????????????????????????(14) ???????????????????????(15) e r ive field c trode is o larization. t is o n (hz-m) ibration vibration i bration n (hz-m) e r (m) h z-m) cylinder (m) c oupling ing repre- n a ceramic input. this d ividual r fm) and a pplicable ??????(6) ??????(7) 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
8 piezoelectric ceramics vol.04 nep b) voitage output constant this is the intensity of the electric field caused when a specified amount of stress is applied to a material that is in the condition of zero displacement. voltage output constant is calculated with eq. 16. constants d and constants g can be d 31 ,d 33 , or d 15 , and g 31 , g 33 , or g 15 , depending on the type of vibration. this is the temperature at which polarization disappears and the piezoelectric qualities are lost. it is also the temperature at which the value of the dielectric constant becomes maximum. g d vmn =? ( ) / 7) curie temperature ????????????????????????(16) the temperature coefficient is a measure of the variation of the resonant frequency and static capacitance with change in temperature. temperature coefficient is calculated with eqs. 17 and 18. where tk(f) : temperature coefficient of resonant frequency (ppm/ ?c ) f (t 1 ) : resonant frequency at temperature t 1 ?c (hz) f (t 2 ) : resonant frequency at temperature t 2 ?c (hz) f 20 : resonant frequency at temperature 20 ?c (hz) tk(c) : temperature coefficient of static capacitance (ppm/ ?c ) c (t 1 ) : static capacitance (f) at temperature t 1 ?c c (t 2 ) : static capacitance (f) at temperature t 2 ?c c20 : static capacitance at 20 ?c (f) t : temperature difference (t 2 t 1 ) ( ?c ) 8) temperature coefficient ????(17) ??(18) the aging rate is an index of the change in resonant frequency and static capacitance with age. to calculate this rate, after polarization the electrodes of a transducer are shorted together, and are heated for a specified period of time. measurements are taken of the resonant frequency and static capacity every 2 n days. (that is, at 1, 2, 4, and 8 days.) the aging rate is calculated with eq. 19. where (ar) : aging rate for resonant frequency or static capacitance t 1 ,t 2 : number of days aged after polarization x t1 ,x t2 : resonant frequency or static capacitance at t 1 and t 2 days after polarization () log log ar tt xt xt xt = ? ? ? 1 21 2 1 1 the density is calculated with eq. 20, after determining the volume and weight of the specified ceramic material. where w : weight (kg) of ceramic material v : volume (m 3 ) of material d w v kg m = ( ) / 3 9) aging rate 10) density ????????????(19) ?????????????????????????(20) tk f t ft ft f ppm c tk c t ct ct c ppm c () () ( ) (/) () () ( ) (/) =? ? =? ? 1 10 1 10 12 20 12 20 6 6 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 9 table 1-1 shows the material characteristics of nec tokin's standard nepec npm ceramic materials. notes 1. frequency constants; n1 : radial frequency constant (fr d) n2 : lengthwise frequency constant (fr ) n3 : longitudial frequency constant (fa ) n4 : thickness frequency constant (fa ) n5 : shear frequency constant (fa ) 2. the temperature and aging characteristics shown are values of radial vibration for a sample of 17.7 ?1.0t (mm) in size. 3. the values of kr (electromechanical coupling coefficient) shown in parentheses are approximate values. all others are exact. characteristics of standard materials nepec npm ceramics resonant to e ctrodes of a a ted for a e taken of e very 2 n aging rate q uency or r polarization t ic y s after r s pecified a l ?????(19) ?????(20) 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
10 piezoelectric ceramics vol.04 table 1-1. characteristics of standard nepec npm materials loss factor characteristics relative dielectric constant frequency constant electro- mechanical coupling constant elastic constant piezo- electric constant poisson's ratio temperature coefficient aging rate mechanical quality factor curie temperature density thermal expansion coefficient 1400 1350 0.3 2160 1600 1510 1960 970 (0.65) 0.55 0.34 0.68 0.55 0.71 12.7 15.4 7.9 6.5 -133 302 419 -10.4 23.5 45.1 0.32 300 300 1800 2300 0.4 -2 1500 325 7.77 30 1400 1300 0.3 2160 1570 1490 2010 1170 (0.67) 0.56 0.33 0.67 0.52 0.66 13.1 15.6 7.6 6.4 -132 296 464 -10.7 23.8 39.4 0.31 600 400 700 3000 0.4 -2 1800 315 7.79 12 1100 1400 0.4 2240 1670 1520 2000 920 (0.67) 0.56 0.34 0.67 0.52 0.78 11.2 15.2 8.9 6.6 -99 226 652 -13.1 30.0 44.4 0.24 -250 -550 3700 3600 0.5 -5 1600 320 7.72 11 5440 5000 2.0 2040 1410 1370 1800 1110 (0.57) 0.50 0.34 0.68 0.62 0.66 14.8 18.1 6.8 5.5 -287 635 930 -6.0 13.2 21.0 0.34 200 900 3800 3500 0.5 -5 70 145 8.00 14 1800 2000 2.0 1960 1410 1310 1940 860 (0.78) 0.62 0.38 0.73 0.52 0.77 16.5 19.9 6.1 5.0 -198 417 711 -12.1 25.4 41.0 0.34 -300 -150 3500 3000 0.1 -5 75 330 7.82 29 material unit qm tc (?c) n-6 n-61 n-8 n-10 n-21 t 33 / 0 tan (%) [radial] [lengthwise] [longitudinal] [thickness] [shear] [radial] [transverse] [logitudinal] [thickness] [shear] kr k 31 k 33 kt k 15 n 1 n 2 n 3 n 4 n 5 (hz-m) (hz-m) (hz-m) (hz-m) (hz-m) s e 11 ( 10 -12 m 2 /n) s e 33 ( 10 -12 m 2 /n) y e 11 ( 10 10 n/m 2 ) y e 33 ( 10 10 n/m 2 ) d 31 ( 10 -12 m/v) d 33 ( 10 -12 m/v) d 15 ( 10 -12 m/v) g 31 ( 10 -3 vm/n) g 33 ( 10 -3 vm/n) g 15 ( 10 -3 vm/n) tk (fr) (ppm/?c) tk (?c) (ppm/?c) - 20~20c 20~60 c - 20~20c 20~60 c fr (%/10 years) c (%/10 years) d ( 10 3 kg/m 3 ) ( 10 -7 /?c) (room temperature ~200c) t 11 / 0 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 11 characteristics and main applications by material table 1-2 shows characteristics and main applications by material. use materials that match your use. ltem dielectric constant electromechanical coupling coefficient piezoelectric modules piezoelectric output constant mechanical quality coefficient resonant frequency temperature coefficient dielectric constant temperature coefficient aging characteristics transducers to generate ultrasonic signals, pressure generating elements and medical equipment transducers. pickups, microphones, speakers, underwater receiving transducers, and other acoustic equipment. = particularly good value = good value = lower value table 1-2. general characteristics and main applications material n-6 n-61 n-8 n-10 n-21 main applications high-power piezoelectric materials the vibration energy of the piezoelectric transducer is in proportion to the square of the transducer tip end vibration speed. there are high-power materials not listed in the catalog that do not generate heat at high vibration velocities. please contact us for details. materials for actuators actuator materials not listed in the catalog exemplified here. please contact us for further details. pmv = 1 2 2 new series n21 n10 350 300 250 200 150 100 d31 / pm/v 150 200 250 300 350 tc/?c 0 30 25 20 15 10 5 0 0.2 0.4 0.6 0.8 1.0 transducer tip-end vibration speed (m/s) transducer heat generation t(?c) n-8 new material vibration energy m : equivalent mass v : transducer tip end vibration speed 1800 2000 2.0 1960 1410 1310 1940 860 (0.78) 0.62 0.38 0.73 0.52 0.77 16.5 19.9 6.1 5.0 -198 417 711 -12.1 25.4 41.0 0.34 -300 -150 3500 3000 0.1 -5 75 330 7.82 29 n-21 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
12 piezoelectric ceramics vol.04 selecte d a) tempe 0.80 0.70 0.60 0.50 0.30 -20 kr n-21 fig.1 150 140 130 120 110 -20 fr (khz) n-8 n-61 n-6 n-10 n-21 fig.1 0.40 n-10 n-6 n-61 13000 -20 c (pf) n-10 fig.1 11000 9000 7000 5000 3000 1000 n-21 n-6 n-61 n-1 n-8 external surface nec tokin transducers are coated for protection, for uniformity of the electromechanical interface, and to ensure an attractive external view. table 1-4 shows the different types of surface coatings available. select the coating that is best for your requirements. table 1-4. types of external coating m coating b coating features synthetic resin; resists water and oil. suitable for fish-finding sonars and air excitation. bakelite resin; resists solvents. suitable for ultrasonic cleaning. coating coating surfaces all surfaces are coated standard color silver gray dark brown (bakelite color) all surfaces are coated specification example shape ( mm ) cylinder disc column square plate material fr ( khz ) kc ( pf ) 38 34 30 36 31 30 10 0.3 20 0.5 20 1.0 40 2.5 40 3.0 50 2.5 50 3.0 60 5.0 7 13.5 7 16.5 10 13.5 10 16.5 20 20 0.3 20 20 0.4 25 25 0.5 80 15 0.3 80 15 0.4 100 15 0.5 100 15 0.6 nr nd nd ns n - 21 n - 21 n - 21 n - 21 n - 8 n - 6 n - 6 n - 6 n - 6 n - 6 n - 21 n - 21 n - 21 n - 21 n - 21 n - 21 n - 21 n - 21 n - 21 n - 21 n - 21 24 25.8 6400 4000 2100 54 54 43 43 36 100 80 100 80 6500 5000 4000 6500 5000 4000 3000 0.25 0.25 0.57 0.6 0.55 0.6 0.6 0.6 0.6 0.6 0.65 0.65 0.65 0.65 0.3 0.3 0.3 0.3 0.3 0.3 0.3 26500 19600 3000 7000 2700 5600 4600 8900 7400 6500 48 40 98 90 13500 10500 14000 42000 32500 33000 28500 terminal layout the three types of terminal layout are shown in table 1-3 for the disc and cylindrical shapes. layout of terminals for the column, square plate, and square column shapes are the same as right. for inquiries about special terminal configurations, table 1-3 terminals p-terminal s-terminal o-terminal description cylinder disc terminals (solder dots) provided on positive and negative electrode surfaces. negative electrode terminal is available on positive electrode surface. negative electrode terminal is available on side face. 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 13 selected material characteristics a) temperature characteristics b) aging characteristics 0.80 0.70 0.60 0.50 0.30 -20 0 20 40 60 kr temp (c) n-21 sample: disc (17.7mm 1mm t) fig.1-10. variation in electromechanical coupling coefficient with temperature 0.80 0.70 0.50 0.40 0.30 kr 68 10 2468 100 468 1000 fig.1-13. variation in electromechanical coupling coefficient with aging days sample: disc (17.7mm 1mm t) 42 150 140 130 120 110 -20 0 20 40 60 fr (khz) temp (c) n-8 n-61 n-6 n-10 n-21 n-8 n-61 n-6 n-10 n-21 sample: disc (17.7mm 1mm t) fig.1-9. variation in resonant frequency with temperature 150 140 130 120 110 fr (khz) 68 10 2468 100 468 1000 fig.1-12. variation in resonant frequency with aging days sample: disc (17.7mm 1mm t) 42 n-8 n-61 n-6 n-21 0.40 n-10 n-6 n-61 n-21 n-10 n-6 n-61 0.60 n-21 n-6 n-61 n-8 13000 -20 0 20 40 60 c (pf) temp (c) n-10 sample: disc (17.7mm 1mm t) fig.1-11. variation in static capacitance with temperature 3600 3200 2800 2400 1200 c (pf) 68 10 2468 100 468 1000 fig.1-14. variation in static capacitance with aging days sample: disc (17.7mm 1mm t) 42 n-21 11000 9000 7000 5000 3000 1000 n-21 n-6 n-61 n-1 n-8 n-10 n-21 n-6 n-61 n-8 2000 1600 n-6 n-61 n-8 n g g e s c es e d standard color silver gray dark brown (bakelite color) c es e d c ( pf ) 26500 19600 3000 7000 2700 5600 4600 8900 7400 6500 48 40 98 90 13500 10500 14000 42000 32500 33000 28500 inquiries 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
14 piezoelectric ceramics vol.04 the job of a into mechan transducers u are uniquely variety of ap we divide th 1) conversio energy for h converting m communicat piezoele < appl c) thermal aging characteristics d) characteristics of high-voltage aging 150 140 130 120 90 1 fr (khz) days n-6 fig.1-15. variation in resonant frequency with thermal aging 21 fr (khz) fig.1-18. variation in dielectric strength (test 1) hours test conditions sample: ring (60mm 45mm 16mm t) material: n-6 applied voltage: 2,000v (in air) frequency: 5.5khz duration: 10 min. 1 sample: disc (17.7mm 1mm t) conditions of burn-in 200 c 1h 110 100 2468 10 2468 100 n-21 (before test) 20 19 0.37 0.36 0.35 0.34 k 31 1100 1000 900 800 c (pf) 2468 10 2468 100 (before test) 0.80 0.70 0.60 0.30 1 kr days n-21 fig.1-16. variation in electromechanical coupling coefficient with thermal aging 58 fr (khz) fig.1-19. variation in dielectric strength (test 2) hours 1 sample: disc (17.7mm 1mm t) conditions of burn-in 200c 1h 0.50 0.40 2468 10 2468 100 n-6 (before test) 57 56 0.58 0.57 0.56 0.55 kr 5000 4900 4800 4700 c (pf) 2468 10 2468 100 (before test) 4000 3500 3000 1000 1 c (pf) days n-21 fig.1-17. variation in static capacitance with thermal aging 220 fr (khz) fig.1-20. variation in dielectric strength (test 3) hours test conditions sample: ring (51.4mm 44.8mm 3.67mm t) material: n-6 applied voltage: 1,000v(50hz ac) duration: 1min. 1 2500 2000 2468 10 2468 100 n-6 (before test) 210 200 0.33 0.32 0.31 0.31 k 31 20300 20200 20100 20000 c (pf) 2468 10 2468 100 (before test) 1500 test conditions sample: ring (40mm 3mm t) material: n-6 applied voltage: 2,800v (rms) pluse width: 100m sec. pluse interval: 1sec. duration: 10min. sample: disc (17.7mm 1mm t) conditions of burn-in 200c 1h ? ? 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 15 the job of a transducer is to convert electrical energy into mechanical energy, and vice versa. and transducers using nec tokin piezoelectric ceramics are uniquely suited to performing this job in a wide variety of applications. to help classify transducers, we divide their applications into two general areas: 1) conversion of electrical energy into mechanical energy for hydraulic or motive power, and 2) converting mechanical into electrical energy for communications and electronics. langevin bolt-on transducers transducers for cleaning equipment molded waterproof transducers high-frequency transducers aerial microphone transducers sonar transducers piezoelectric ceramics mechanical power applications ?????????????????? ????????????? ????????????????? ??????????????????? ????????????????? ??????????????????????????? 16 19 20 26 27 28 electrical and communications applications g ing g th (test 1) 0 gth (test 2) 0 gth (test 3) ) 0 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
16 piezoelectric ceramics vol.04 shape an d m1 0 45 nbl-45282h-a 28.2 28.0 27.8 27.6 27.4 27.2 27.0 fo (khz) 20 ymo (ms) 30 40 temperat u langevin bolt-on transducers outline nec tokin's langevin-type transducers are used where powerful ultrasonic waves must be generated, such as in cleaning equipment, ultrasonic treatment machines, and welders for plastic. for application flexibility and ease of installation, these transducers are mounted in a structure that can be bolted almost anywhere. nec tokin's high-performance nepec n-61 is excellent for use in these langevin transducers. nec tokin produces a number of this type of transducer, all featuring high quality and excellent output levels, and all based on a unique nec tokin design. features ? high mechanical q and excellent electro-acoustic conversion efficiency, providing a high output amplitude. ? piezoelectric element offers a high speed of vibration ? n-61 ceramics have extended temperature range, ensuring good amplitude linearity. ? bolt-on mounting gives fast, easy installation and high reliability. resonant frequency dynamic admittance mechanical q static capacitance maximum allowable velocity maximum allowable power applications fo (khz) yo (ms) qm c (pf) v (cm / s) p (w) 45282h-a 28.0 40 500 4000 40 50 45402h-a 40.2 15 500 4000 50 50 item type table 2-1 markings specifications of standard models note: maximum allowable power is based on the data where one unit is measured with a water load on one side. product models are classified as shown in the example here: nbl 45 28 2 h h = horn construction; output surface has step or horn shape. s = straight construction 2 = number of piezoelectric elements (2 elements) 28 = resonant frequency (28khz) 45 = diameter of acoustic wave radiation ( 45mm) cleaning equipment 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 17 shape and dimensions m10.p1 13 39 11.5 19 10 79.5 11 45 35 nbl-45282h-a 28.2 28.0 27.8 27.6 27.4 27.2 27.0 20 50 100 150 fo (khz) temperature (c) 20 20 50 100 150 ymo (ms) temperature (c) 30 40 3000 20 50 100 150 c (pf) temperature (c) 20 50 100 150 temperature (c) 4000 5000 6000 ir (m) 1 10 5 5 10 4 1 10 4 fig. 2-1 fig. 2-2. temperature characteristics of nbl-45282h-a nbl-45402h-a 11 13 m10.p1 45 53.5 8 27 11.5 35 temperature characteristics e used where e d, such as t machines, xibility and m ounted in h ere. c n-61 is c ers. nec t ransducer, p ut levels, s ign. 2 h-a 0.2 5 0 0 0 0 5 0 5 0 t he example ; output o r horn i on lectric e nts) n cy (28khz) s tic wave m ) 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
18 piezoelectric ceramics vol.04 resonant frequency dynamic admittance mechanical q static capacitance maximum allowable velocity maximum allowable power applications fo (khz) ymo (ms) qm c (pf) v 0-p (cm / s) p (w) nbl15602s 60 25 500 850 50 2.5 nbl20602s 60 20 400 1250 40 3.7 item type table 2-2 specifications of standard models shape and dimensions horn installation reference example vibration note) maximum allowable input in no-load state treatment machines fig. 2-4 fig. 2-3 fig. 2-5 (40.8) (40.4) (89.9) (89.1) 15 20 20 15 6 6 nbl15602s nbl20602s 0 2 4 6 8 10 1 0 234 horn installation example nbl15602s vibration ( m) input power p(w) 0 2 1 3 4 5 6 7 1 0235 4 horn installation example nbl15602s vibration ( m) input power p(w) no-load state no-load state 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 19 2 s 7 5 4 llation example 5602s transducers for cleaning equipment outline in the past, transducers for cleaning equipment have been found almost exclusively in ultrasonic cleaners for industrial and business use. today, however, small cleaning equipment for glasses, false teeth, gemstones, etc. is increasingly found in individual households as well. nec tokin's transducers for cleaning equipment utilize our n-6 material, providing ultrasonic generators that are compact and extraordinarily temperature-resistant. cleaning vessel piezoelectric transducer fabricated from n-6 fig. 2-6. product diagram nec tokin 27-01 d t 58 56 54 52 0 50 100 150 200 fr (khz) (fr) temperature (c) 0.80 0.70 0.60 0.50 0 50 100 150 200 kr (kr) temperature (c) 10 6 10 5 10 4 10 3 0 50 100 150 200 (insulation resistance) temperature (?c) fig. 2-7. variation in n-6 characteristics with temperature 0 insulation resistance (m ) specifications temperature characteristics 40 40 50 50 60 2.5 3.0 2.5 3.0 5.0 54 54 43 43 36 0.60 0.60 0.60 0.60 0.60 5600 4600 8900 7400 6500 d (mm) t (mm) fr (khz) kr c (pf) table 2-3 specification example 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
20 piezoelectric ceramics vol.04 molded waterproof transducers outline transducers that can withstand salt water and under- water pressures are used to generate ultrasonic signals for fish finders, sonar equipment, depth gauges, and doppler-effect velocity and current meters. nec tokin? molded transducers are highly reliable, even in the face of severe underwater conditions. completely waterproof, they offer excellent mechanical strength and temperature characteristics, thanks in part to their unique nec tokin design and technology. by using a variety of different materials for our molded transducers, we can offer a large variety of frequency, input, and directivity characteristics. features ? high reliability, thanks to nec tokin? own molding technology, including solid urethane rubber molding and baked neoprene rubber. ? excellent noise characteristics. ? wide range of frequencies and molding materials available. t gm 60-50 a-10 la markings product models are classified as shown in the following example: cable type l: chloroprene, la: vinyl cable length (m) no. of transducers included a: 3, b: 2 resonant frequency (khz) transducer outside diameter (mm) molding material gm: rubber molding, mm: metal molding, bm: plastic molding transducer material t: vpt, n: npm specificati o model tgm60-40-1 tgm60-45-1 tgm60-50-1 tgm42-75-1 tgm80-75-1 tgm100-10 0 tgm50-200- tgm80-200- tgm100-20 0 tmm60-50-1 tmm50-200 - tgm60-50a - tgm50-200 a tgm60-50b - tgm46-68b - tgm42-75b - tgm50-200 b nbm40-50- 8 tbm50-200- 8 typ e typ e physical c h 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 21 n d under- n ic signals ges, and h ly reliable, t ions. t c teristics, d esign and materials l arge specifications of standard models table 2-6 model tgm60-40-10l tgm60-45-10l tgm60-50-10l tgm42-75-10l tgm80-75-12l tgm100-100-15l tgm50-200-10l tgm80-200-20l tgm100-200-20l tmm60-50-10la tmm50-200-10la tgm60-50a-15l TGM50-200A-15L tgm60-50b-12l tgm46-68b-12l tgm42-75b-12l tgm50-200b-12l nbm40-50-8la tbm50-200-8la resonant frequency (khz) 40 45 50 75 75 100 200 200 200 50 200 50 200 50 68 75 200 50 200 impedance () at resonance 150 ~ 400 150 ~ 400 150 ~ 350 200 ~ 600 300 ~ 800 200 ~ 400 100 ~ 400 50 ~ 200 30 ~ 100 100 ~ 300 200 ~ 400 50 ~ 150 70 ~ 150 100 ~ 300 50 ~ 200 50 ~ 200 150 ~ 400 150 ~ 350 200 ~ 450 static capacitance (pf) 7500 7500 8000 3400 2500 4500 2400 5500 7500 8000 2500 23000 5500 15000 12700 9000 4300 2800 2800 insulation resistance (m) 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over 500 and over directivity 50? 45? 44? 36? 20? 12? 11? 7? 6? 44? 11? 12?44? 5?11? 13?44? 11?38? 11?36? 11? 60? 11? shape a a a a a a a a a b b e e d d d d c c type a type b type c type d type e f e d c a b f e a b d c f e d c b f e d c a b two elements f e d c a b three elements fig. 2-10. shape and construction physical characteristics 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
22 piezoelectric ceramics vol.04 table 2-7 model tgm60-40-10l tgm60-45-10l tgm60-50-10l tgm42-75-10l tgm80-75-12l tgm100-100-15l tgm50-200-10l tgm80-200-20l tgm100-200-20l tmm60-50-10la tmm50-200-10la tgm60-50a-15l TGM50-200A-15L tgm60-50b-12l tgm46-68b-12l tgm42-75b-12l tgm50-200b-12l nbm40-50-8la tbm50-200-8la 69.5 69.5 69.5 47.8 104.0 120.0 69.5 100.0 124.0 80.0 206.0 140.0 ? a 89.5 89.5 89.5 61.0 120.0 130.0 89.0 120.0 140.0 100.0 226.0 160.0 68.0 5.0 5.0 5.0 4.0 5.0 4.0 5.0 7.0 7.0 56 7.0 5.0 31.0 78.0 78.0 60.0 43.0 65.0 55.0 60.0 45.0 45.0 120 160.0 60.0 120.0 60.0 60.0 60.0 27.0 30.0 40.0 60.0 30.0 30.0 dimensions w ?1.11d/ inch m ?22 p1.5 60.0 50.0 11, two-core shield captire cable (chloroprene) 7, two-core shield captire cable (vinyl) 11, two-core shield captire cable (chloroprene) 11, two-core shield captire cable (chloroprene) 5, two-core shield captire cable (vinyl) f (cable) shape a b e d c edcb 50 300 270 240 300 270 240 300 270 240 typical di r 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 23 e ne) e ne) e ne) shape a b e d c 0 (db) 0 10 20 30 40 50 50 30 330 60 300 90 270 120 240 tgm60-50-10l 0 (db) 0 10 20 30 330 60 300 90 270 120 240 tgm60-75-10l 0 (db) 0 10 30 330 60 300 90 270 120 240 tgm50-200-10l 0 (db) 0 10 40 30 330 60 300 90 270 120 240 tgm60-50a-15l 0 (db) 0 10 20 30 40 30 330 60 300 90 270 120 240 tgm60-50a-15l typical directivity patterns (1) fig. 2-11. directvity 30 50 40 20 30 40 50 20 30 50 50 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
24 piezoelectric ceramics vol.04 0 (db) 0 10 40 30 330 60 300 90 270 120 240 tgm60-50b-12l 0 (db) 0 10 30 330 60 300 90 270 120 240 TGM50-200A-15L 0 (db) 0 10 30 330 60 300 90 270 120 240 TGM50-200A-15L fig. 2-11. directvity 0 (db) 0 10 20 30 330 60 300 90 270 120 240 tgm60-75a-15l 0 (db) 0 10 30 330 60 300 90 270 120 240 tgm60-75a-15l 30 40 0 (db) 0 10 20 30 330 60 300 90 270 120 240 tgm60-50b-12l 30 20 30 50 50 40 20 50 50 20 30 40 50 50 40 30 20 40 30 typical dir e 300 270 240 300 270 240 note: transd u are als o 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 25 60 90 120 60 90 120 60 90 120 typical directivity patterns (2) 0 (db) 0 20 30 40 30 330 60 300 90 270 120 240 tmm60-50-10la fig. 2-11. directivity 0 (db) 0 10 20 30 40 30 330 60 300 90 270 120 240 nbm40-50-11 0 (db) 0 10 30 330 60 300 90 270 120 240 nbm50-118-9l 40 0 (db) 0 10 30 330 60 300 90 270 120 240 tbm50-200-11 note: transducers with non-standard shapes and dimensions are also available. for inquiries, see page 34. 10 50 50 40 30 20 50 30 20 50 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
26 piezoelectric ceramics vol.04 high-frequency transducers outline features compared to ordinary piezoelectric transducers, these types operate at much higher frequencies: usually in the 1~10 mhz range. one of the primary applications of high-frequency transducers is as a sensor for flaw detection. another important application area is medical equipment; in fact, with ultrasonic diagnosis becoming ever more widespread, hf piezoelectric transducers are the focus of increasing attention. here are some of the types of ultrasonic diagnosis that require hp transducers: the vibration mode of these transducers is usually thickness resonance, and the frequency is high. for this reason, thin plate transducers with low impedance at resonance are needed. the dielectric constant of nec tokin nepec ? is low, and its impedance characteristics and other performance parameters are excellent for use in high-frequency transducers. fetus phonocardiographs blood flowmeter doppler system: pulse echo system: tomography electron scanning mechanical scanning cranial disease diagnosis cardiac wall displacement measurement ? high impedance at resonant frequency. ? excellent electromechanical coupling in thickness vibration mode. ? high sensitivity. ? both thickness and radial vibration offer good anisotropic properties. ? thickness resonance spurious emissions are low, and resolution is excellent. specifications example table 2-8 material shape dimensions (mm) characteristics 21 8 21 21 21 21 21 21 21 21 d 20 20 10 20 20 25 15 15 15 15 t 0.5 1.0 0.3 0.3 0.4 0.5 0.3 0.4 0.5 0.6 ? ? ? 20 20 25 80 80 100 100 f r (khz) 4,000 2,100 6,400 6,500 5,000 4,000 6,500 5,000 4,000 3,000 k 31 0.30 0.30 0.30 0.30 0.30 0.30 0.30 kr 0.60 0.55 0.57 c (pf) 7,000 2,700 3,000 13,500 10,500 14,000 42,000 32,500 33,000 28,500 terminal s s s p p p p p p p d t d t d t 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 27 c ers, these u sually in p plications r for flaw r ea is diagnosis e lectric n tion. diagnosis u sually i gh. for i mpedance stant of d ance m eters are c ers. g raphs a nning l scanning m easurement ) 0 0 0 0 0 0 0 0 0 0 terminal s s s p p p p p p p aerial microphone transducers outline ultrasonic aerial microphones generate ultrasonic waves that are radiated through the air and reflected from a target to measure distance. these microphones are used for traffic control, obstacle detection, as robot sensors, and in other similar applications. transducers for aerial microphones are of two types, bimorph and cylindrical , with different vibration modes. such transducers are most often used together with a horn mounted in the radiation plane. nec tokin aerial microphone transducers have good output power, receiving sensitivity and directivity-all important in this type of application. features ? good temperature characteristics. ? cylindrical transducers are moisture-resistant, ensuring stable operation outdoors. ? high mechanical coupling, high sensitivity. d (mm) 38 36 d (mm) 34 31 h (mm) 30 30 fr (khz) 23.7 25.8 k 0.25 0.25 c (pf) 28000 19600 table 2-9. n-21 specification example d (mm) 18.7 t (mm) 1.5 fr (khz) 23.5 c (pf) 2100 f (khz) 2.0 table 2-10. n-6 specification example specifications of standard models circuit example shape h d d d t shape lead wires metal case cylindrical transducer reflector direction of sound waves ultrasonic wave bimorph transducer external case (resonance plate) silicone rubber ring terminal fig. 2-12. details of construction 27 nec tokin 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
28 piezoelectric ceramics vol.04 sonar transducers outline depth finders, underwater detectors, and fish finders all utilize the principle of sonar, in which sound waves are radiated through the water to detect and measure the distance to the target. although there are differences in the resolution and distance capabilities required of sonar transducers, in general all should have the best possible sensitivity, resolution, directivity, and reliability. sonar transducers fabricated of nec tokin? superior nepec ? material score high marks in all departments, and are available for a wide variety of applications. characteristics of sonar transducer materials transducer type disc square column cylinder langevin a b c d vibration mode thickness vibration thickness vibration longitudinal vibration longitudinal vibration diameter direction vibration operating frequency 70 ~ 500 40 ~ 100 100 ~ 500 10 ~ 200 20 ~ 100 main features easy frequency adjustment high mechanical strength easy frequency adjustment good electromechanical coupling adjustment of mechanical q and frequency are easy low frequency can be obtained at low impedance remarks dimensions and characteristics are determined according to the requirements of specific customers. table 2-11 (a) ( b ) (c) (d) direction of sound wave radiation (displacement direction) direction of polarization fig. 2-13 types and features material k 31 t 33 / 0 qm tc (?c) n-6 n-21 0.34 0.38 1400 1800 1500 75 excellent stability at high output levels low qm and high sensitivity 325 300 table 2-12 features 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
piezoelectric ceramics vol.04 29 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
30 piezoelectric ceramics vol.04 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph
the names of the products and the specifications in this catalog are subject to change without notice for the sake of improvement. the manufacturer also reserves the right to discontinue any of these products. at the time of delivery, please ask for specification sheets to check the contents before use. material selection, installation and activation of piezoelec- tric ceramics should be decided upon by users according to the application. for proper evaluation and decision, products should be tested repeatedly in both realistic and abnormal operating conditions. the manufacturer? warranty will not cover any disadvan- tage or damage caused by improper use of the products, deviating from the characteristics, specifications, or conditions for use described in this catalog. please be advised that the manufacturer accepts no responsibility for any infraction on third party patents or industrial copyrights by users of the manufacturer? products. the manufacturer is responsible only when such infractions are attributable to the structural design of the product and its manufacturing process. no part of this document may be reproduced without written permission from the manufacturer. export control for customers outside japan nec-tokin products should not be used or sold for use in the development, production, stockpiling or utilization of any conventional weapons or mass- destructive weapons (nuclear weapons, chemical or biological weapons, or missiles), or any other weapons. for customers in japan for products which are controlled items subject to the' foreign exchange and foreign trade law' of japan, the export license specified by the law is required for export. when ordering nepec piezoelectric materials specify the following items when placing an order with nec tokin for nepec : 1) shape (disc, column, cylinder, square plate, sphere, or bimorph). 2) desired material and application. 3) dimensions. 4) vibration mode and resonant frequency used. 5) whether special surface treatment is required, and if so, what type. 6) s, p, or other designated terminal. precautions 3 4 9 15 16 19 20 26 27 28 ????? ????? ????? ????? ????? ????? ????? ????? ????? ????? when ordering transducers or other finished products specify model name and number when placing an order for transducer products such as molded trans- ducers for underwater use. also note any special require- ments. this catalog is current as of march 2010. 103199307pievol04e ?"mmtqfdjgjdbujpotjouijtdbubmphboeqspevdujpotubuvtpgqspevdutbsftvckfduupdibohfxjuipvuopujdf1sjpsupuifqvsdibtf qmfbtfdpoubdu/&$50,*/gpsvqebufeqspevduebub ?1mfbtfsfrvftugpsbtqfdjgjdbujpotiffugpsefubjmfeqspevduebubqsjpsupuifqvsdibtf ?#fgpsfvtjohuifqspevdujouijtdbubmph qmfbtfsfbe1sfdbvujpotboepuifstbgfuzqsfdbvujpotmjtufejouifqsjoufewfstjpodbubmph


▲Up To Search▲   

 
Price & Availability of TGM50-200A-15L

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X